\qquad Date \qquad Class \qquad

Additional Practice

1. A closed rectangular box has a height of 2 feet, a length of 4 feet, and a width of 4 feet.
a. What is the volume of the box? What is the surface area of the box?
b. Give the dimensions of a closed rectangular box that has one-fourth the volume of this 2-4-4 box, and give the surface area of this smaller box.
c. What is the ratio of the surface area of the 2-4-4 box to the surface area of the box you found in part (b)?
2. Lee built a box with a volume equal to 8 times the volume of a $2-1-5$ box.
a. What might be the dimensions of Lee's box?
b. Is your answer to part (a) the only possibility for the dimensions of the larger box? Explain your reasoning.
3. A cone has a height of 12 centimeters and a base with a radius of 4 centimeters.
a. The cone is scaled down to a similar cone with one-eighth of the original volume. What are the dimensions of the scaled-down cone?
b. Is your answer to part (a) the only possibility for the dimensions of the scaled-down cone? Explain your reasoning.
4. a. How does the volume of a sphere with a radius of 4 centimeters compare to the volume of a sphere with a radius of 6 centimeters? Explain your reasoning.
b. Are the 4-centimeter sphere and the 6 -centimeter sphere similar? Explain your reasoning.
\qquad Date \qquad Class \qquad
5. When a ball is immersed in water, it displaces 36π cubic centimeters of water. What is the radius of the ball?
6. A conical cup is partially filled with water as shown in the diagram below. Use the diagram to answer the following questions.

a. What is the radius of the top of the cup? Explain your reasoning.
b. What is the volume of the water in the cup?
c. What is the volume of the cup? Explain.
\qquad Date \qquad Class \qquad

Additional Practice (continued)

7. When a cube is dropped into a graduated cylinder partially filled with water, 125 ml of water are displaced. What is the length of each edge of the cube?
Explain your reasoning.
8. a. Complete the table below for each rectangular box.

Closed Box	Surface Area	Volume
A: $1-2-3$ box		
B: $2-4-6$ box		
C: $3-6-9$ box		
D: $4-8-12$ box		

b. Use your table from part (a) to complete the table below.

Boxes to Compare	Ratio of Dimensions	Ratio of Surface Areas	Ratio of Volumes
B and A			
C and A			
D and A			
D and B			
C and B			
D and C			

c. What patterns do you see in the ratios?

